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This chapter gives an overview of statistical methods used in high-energy physics. In
statistics, we are interested in using a given sample of data to make inferences about a
probabilistic model, e.g., to assess the model’s validity or to determine the values of its
parameters. There are two main approaches to statistical inference, which we may call
frequentist and Bayesian.

In frequentist statistics, probability is interpreted as the frequency of the outcome
of a repeatable experiment. The most important tools in this framework are parameter
estimation, covered in Section 39.2, statistical tests, discussed in Section 39.3, and
confidence intervals, which are constructed so as to cover the true value of a parameter
with a specified probability, as described in Section 39.4.2. Note that in frequentist
statistics one does not define a probability for a hypothesis or for the value of a parameter.

In Bayesian statistics, the interpretation of probability is more general and includes
degree of belief (called subjective probability). One can then speak of a probability
density function (p.d.f.) for a parameter, which expresses one’s state of knowledge about
where its true value lies. Bayesian methods provide a natural means to include additional
information, which in general may be subjective; in fact they require prior probabilities for
the hypotheses (or parameters) in question, i.e., the degree of belief about the parameters’
values, before carrying out the measurement. Using Bayes’ theorem (Eq. (38.4)), the
prior degree of belief is updated by the data from the experiment. Bayesian methods for
interval estimation are discussed in Sections 39.4.1 and 39.4.2.4.

For many inference problems, the frequentist and Bayesian approaches give similar
numerical values, even though they answer different questions and are based on
fundamentally different interpretations of probability. In some important cases, however,
the two approaches may yield very different results. For a discussion of Bayesian vs.
non-Bayesian methods, see references written by a statistician [1], by a physicist [2], or
the detailed comparison in Ref. [3].

39.1. Fundamental concepts

Consider an experiment whose outcome is characterized by one or more data values,
which we can write as a vector x. A hypothesis H is a statement about the probability
for the data, often written P (x|H). (We will usually use a capital letter for a probability
and lower case for a probability density. Often the term p.d.f. is used loosely to refer to
either a probability or a probability density.) This could, for example, define completely
the p.d.f. for the data (a simple hypothesis), or it could specify only the functional form
of the p.d.f., with the values of one or more parameters not determined (a composite
hypothesis).

If the probability P (x|H) for data x is regarded as a function of the hypothesis
H, then it is called the likelihood of H, usually written L(H). Often the hypothesis is
characterized by one or more parameters θ, in which case L(θ) = P (x|θ) is called the
likelihood function.
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2 39. Statistics

In some cases one can obtain at least approximate frequentist results using the
likelihood evaluated only with the data obtained. In general, however, the frequentist
approach requires a full specification of the probability model P (x|H) both as a function
of the data x and hypothesis H.

In the Bayesian approach, inference is based on the posterior probability for H given
the data x, which represents one’s degree of belief that H is true given the data. This is
obtained from Bayes’ theorem (38.4), which can be written

P (H|x) =
P (x|H)π(H)∫

P (x|H ′)π(H ′) dH ′
. (39.1)

Here P (x|H) is the likelihood for H, which depends only on the data actually obtained.
The quantity π(H) is the prior probability for H, which represents one’s degree of belief
for H before carrying out the measurement. The integral in the denominator (or sum,
for discrete hypotheses) serves as a normalization factor. If H is characterized by a
continuous parameter θ then the posterior probability is a p.d.f. p(θ|x). Note that the
likelihood function itself is not a p.d.f. for θ.

39.2. Parameter estimation

Here we review point estimation of parameters, first with an overview of the frequentist
approach and its two most important methods, maximum likelihood and least squares,
treated in Sections 39.2.2 and 39.2.3. The Bayesian approach is outlined in Sec. 39.2.5.

An estimator θ̂ (written with a hat) is a function of the data used to estimate the value
of the parameter θ. Sometimes the word ‘estimate’ is used to denote the value of the
estimator when evaluated with given data. There is no fundamental rule dictating how
an estimator must be constructed. One tries, therefore, to choose that estimator which
has the best properties. The most important of these are (a) consistency, (b) bias, (c)
efficiency, and (d) robustness.

(a) An estimator is said to be consistent if the estimate θ̂ converges in probability (see
Ref. [3]) to the true value θ as the amount of data increases. This property is so
important that it is possessed by all commonly used estimators.

(b) The bias, b = E[ θ̂ ] − θ, is the difference between the expectation value of the
estimator and the true value of the parameter. The expectation value is taken over a
hypothetical set of similar experiments in which θ̂ is constructed in the same way. When
b = 0, the estimator is said to be unbiased. The bias depends on the chosen metric, i.e.,
if θ̂ is an unbiased estimator of θ, then θ̂ 2 is not in general an unbiased estimator for θ2.

(c) Efficiency is the ratio of the minimum possible variance for any estimator of θ to the

variance V [ θ̂ ] of the estimator θ̂. For the case of a single parameter, under rather general
conditions the minimum variance is given by the Rao-Cramér-Fréchet bound,

σ2
min =

(
1 +

∂b

∂θ

)2

/I(θ) , (39.2)
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39. Statistics 3

where

I(θ) = E

[(
∂ lnL

∂θ

)2
]

= −E

[
∂2 lnL

∂θ2

]
(39.3)

is the Fisher information, L is the likelihood, and the operator E[] in (39.3) is the
expectation value with respect to the data. For the final equality to hold, the range of
allowed data values must not depend on θ.

The mean-squared error,

MSE = E[(θ̂ − θ)2] = V [θ̂] + b2 , (39.4)

is a measure of an estimator’s quality which combines bias and variance.

(d) Robustness is the property of being insensitive to departures from assumptions in the
p.d.f., e.g., owing to uncertainties in the distribution’s tails.

It is not in general possible to optimize simultaneously for all the measures of estimator
quality described above. For example, there is in general a trade-off between bias and
variance. For some common estimators, the properties above are known exactly. More
generally, it is possible to evaluate them by Monte Carlo simulation. Note that they will
in general depend on the unknown θ.

39.2.1. Estimators for mean, variance, and median :

Suppose we have a set of n independent measurements, x1, . . . , xn, each assumed to
follow a p.d.f. with unknown mean µ and unknown variance σ2 (the measurements do not
necessarily have to follow a Gaussian distribution). Then

µ̂ =
1

n

n∑

i=1

xi (39.5)

σ̂2 =
1

n − 1

n∑

i=1

(xi − µ̂)2 (39.6)

are unbiased estimators of µ and σ2. The variance of µ̂ is σ2/n and the variance of σ̂2 is

V
[
σ̂2

]
=

1

n

(
m4 − n − 3

n − 1
σ4

)
, (39.7)

where m4 is the 4th central moment of x (see Eq. (38.8b)). For Gaussian distributed xi,
this becomes 2σ4/(n − 1) for any n ≥ 2, and for large n the standard deviation of σ̂ is
σ/

√
2n. For any n and Gaussian xi, µ̂ is an efficient estimator for µ, and the estimators

µ̂ and σ̂2 are uncorrelated. Otherwise the arithmetic mean (39.5) is not necessarily the
most efficient estimator; this is discussed further in Sec. 8.7 of Ref. [4].

If σ2 is known, it does not improve the estimate µ̂, as can be seen from Eq. (39.5);
however, if µ is known, one can substitute it for µ̂ in Eq. (39.6) and replace n − 1 by
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4 39. Statistics

n to obtain an estimator of σ2 still with zero bias but smaller variance. If the xi have
different, known variances σ2

i , then the weighted average

µ̂ =
1

w

n∑

i=1

wixi , (39.8)

where wi = 1/σ2
i and w =

∑
i wi, is an unbiased estimator for µ with a smaller variance

than an unweighted average. The standard deviation of µ̂ is 1/
√

w.

As an estimator for the median xmed, one can use the value x̂med such that half
the xi are below and half above (the sample median). If there are an even number of
observations and the sample median lies between two observed values, the estimator is
set by convention to their arithmetic average. If the p.d.f. of x has the form f(x − µ)
and µ is both mean and median, then for large n the variance of the sample median
approaches 1/[4nf2(0)], provided f(0) > 0. Although estimating the median can often be
more difficult computationally than the mean, the resulting estimator is generally more
robust, as it is insensitive to the exact shape of the tails of a distribution.

39.2.2. The method of maximum likelihood :

Suppose we have a set of measured quantities x and the likelihood L(θ) = P (x|θ)
for a set of parameters θ = (θ1, . . . , θN ). The maximum likelihood (ML) estimators for
θ are defined as the values that give the maximum of L. Because of the properties of
the logarithm, it is usually easier to work with lnL, and since both are maximized for
the same parameter values θ, the ML estimators can be found by solving the likelihood
equations,

∂ lnL

∂θi
= 0 , i = 1, . . . , N . (39.9)

Often the solution must be found numerically. Maximum likelihood estimators are
important because they are unbiased and efficient asymptotically (i.e., for large data
samples), under quite general conditions, and the method has a wide range of applicability.

In general the likelihood function is obtained from the probability of the data under
assumption of the parameters. An important special case is when the data consist of i.i.d.
(independent and identically distributed) values. Here one has a set of n statistically
independent quantities x = (x1, . . . , xn), where each component follows the same p.d.f.
f(x; θ). In this case the joint p.d.f. of the data sample factorizes and the likelihood
function is

L(θ) =

n∏

i=1

f(xi; θ) . (39.10)

In this case the number of events n is regarded as fixed. If however the probability to
observe n events itself depends on the parameters θ, then this dependence should be
included in the likelihood. For example, if n follows a Poisson distribution with mean µ
and the independent x values all follow f(x; θ), then the likelihood becomes

L(θ) =
µn

n!
e−µ

n∏

i=1

f(xi; θ) . (39.11)

June 5, 2018 19:58
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Equation (39.11) is often called the extended likelihood (see, e.g., Refs. [6–8]). If µ is given
as a function of θ, then including the probability for n given θ in the likelihood provides
additional information about the parameters. This therefore leads to a reduction in their
statistical uncertainties and in general changes their estimated values.

In evaluating the likelihood function, it is important that any normalization factors in
the p.d.f. that involve θ be included. However, we will only be interested in the maximum
of L and in ratios of L at different values of the parameters; hence any multiplicative
factors that do not involve the parameters that we want to estimate may be dropped,
including factors that depend on the data but not on θ.

Under a one-to-one change of parameters from θ to η, the ML estimators θ̂ transform
to η(θ̂). That is, the ML solution is invariant under change of parameter. However, other
properties of ML estimators, in particular the bias, are not invariant under change of
parameter.

The inverse V −1 of the covariance matrix Vij = cov[θ̂i, θ̂j ] for a set of ML estimators
can be estimated by using

(V̂ −1)ij = − ∂2 lnL

∂θi∂θj

∣∣∣∣
θ̂

. (39.12)

For finite samples, however, Eq. (39.12) can result in a misestimation of the variances.
In the large sample limit (or in a linear model with Gaussian data), L has a Gaussian
form and lnL is (hyper)parabolic. In this case, s times the standard deviations σi of the
estimators for the parameters can be obtained from the hypersurface defined by the θ

such that
lnL(θ) = lnLmax − s2/2 , (39.13)

where ln Lmax is the value of lnL at the solution point (compare with Eq. (39.73)).
The minimum and maximum values of θi on the hypersurface then give an approximate
s-standard deviation confidence interval for θi (see Section 39.4.2.2).

39.2.2.1. ML with binned data:

If the total number of data values xi, (i = 1, . . . , ntot), is small, the unbinned maximum
likelihood method, i.e., use of Equation (39.10) (or (39.11) for extended ML), is preferred
since binning can only result in a loss of information, and hence larger statistical errors
for the parameter estimates. If the sample is large, it can be convenient to bin the values
in a histogram with N bins, so that one obtains a vector of data n = (n1, . . . , nN )
with expectation values µ = E[n] and probabilities f(n; µ). Suppose the mean values µ

can be determined as a function of a set of parameters θ. Then one may maximize the
likelihood function based on the contents of the bins.

As mentioned in Sec. 39.2.2, the total number of events ntot =
∑

i ni can be regarded
either as fixed or as a random variable. If it is fixed, the histogram follows a multinomial
distribution,

fM(n; θ) =
ntot!

n1! · · ·nN !
p
n1
1 · · ·pnN

N , (39.14)

where we assume the probabilities pi are given functions of the parameters θ. The
distribution can be written equivalently in terms of the expected number of events in each
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6 39. Statistics

bin, µi = ntotpi. If the ni are regarded as independent and Poisson distributed, then the
data are instead described by a product of Poisson probabilities,

fP(n; θ) =

N∏

i=1

µ
ni
i

ni!
e−µi , (39.15)

where the mean values µi are given functions of θ. The total number of events ntot thus
follows a Poisson distribution with mean µtot =

∑
i µi.

When using maximum likelihood with binned data, one can find the ML estimators
and at the same time obtain a statistic usable for a test of goodness-of-fit (see Sec. 39.3.2).
Maximizing the likelihood L(θ) = fM/P(n; θ) is equivalent to maximizing the likelihood

ratio λ(θ) = fM/P(n; θ)/f(n; µ̂), where in the denominator f(n; µ) is a model with an

adjustable parameter for each bin, µ = (µ1, . . . , µN ), and the corresponding estimators
are µ̂ = (n1, . . . , nN ). Equivalently one often minimizes the quantity −2 lnλ(θ). For
independent Poisson distributed ni this is [9]

−2 lnλ(θ) = 2
N∑

i=1

[
µi(θ) − ni + ni ln

ni

µi(θ)

]
, (39.16)

where for bins with ni = 0, the last term in (39.16) is zero. The expression (39.16)
without the terms µi −ni also gives −2 lnλ(θ) for multinomially distributed ni, i.e., when
the total number of entries is regarded as fixed. In the limit of zero bin width, minimizing
(39.16) is equivalent to maximizing the unbinned extended likelihood function (39.11); in
the corresponding multinomial case without the µi − ni terms one obtains Eq. (39.10).

A smaller value of −2 lnλ(θ̂) corresponds to better agreement between the data and

the hypothesized form of µ(θ). The value of −2 lnλ(θ̂) can thus be translated into
a p-value as a measure of goodness-of-fit, as described in Sec. 39.3.2. Assuming the
model is correct, then according to Wilks’ theorem [10], for sufficiently large µi and
provided certain regularity conditions are met, the minimum of −2 lnλ as defined by
Eq. (39.16) follows a χ2 distribution (see, e.g., Ref. [9]) . If there are N bins and m
fitted parameters, then the number of degrees of freedom for the χ2 distribution is N −m
if the data are treated as Poisson-distributed, and N − m − 1 if the ni are multinomially
distributed.

Suppose the ni are Poisson-distributed and the overall normalization µtot =
∑

i µi is
taken as an adjustable parameter, so that µi = µtotpi(θ), where the probability to be in
the ith bin, pi(θ), does not depend on µtot. Then by minimizing Eq. (39.16), one obtains
that the area under the fitted function is equal to the sum of the histogram contents, i.e.,∑

i µ̂i =
∑

i ni. This is a property not possessed by the estimators from the method of
least squares (see, e.g., Sec. 39.2.3 and Ref. [8]) .
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39. Statistics 7

39.2.2.2. Frequentist treatment of nuisance parameters:

Suppose we want to determine the values of parameters θ using a set of measurements
x described by a probability model Px(x|θ). In general the model is not perfect, which
is to say it can not provide an accurate description of the data even at the most optimal
point of its parameter space. As a result, the estimated parameters can have a systematic
bias.

One can improve the model by including in it additional parameters. That is, Px(x|θ)
is replaced by a more general model Px(x|θ, ν), which depends on parameters of interest
θ and nuisance parameters ν. The additional parameters are not of intrinsic interest but
must be included for the model to be accurate for some point in the enlarged parameter
space.

Although including additional parameters may eliminate or at least reduce the effect
of systematic uncertainties, their presence will result in increased statistical uncertainties
for the parameters of interest. This occurs because the estimators for the nuisance
parameters and those of interest will in general be correlated, which results in an
enlargement of the contour defined by Eq. (39.13).

To reduce the impact of the nuisance parameters one often tries to constrain their
values by means of control or calibration measurements, say, having data y. For example,
some components of y could represent estimates of the nuisance parameters, often from
separate experiments. Suppose the measurements y are statistically independent from x

and are described by a model Py(y|ν). The joint model for both x and y is in this case
therefore the product of the probabilities for x and y, and thus the likelihood function for
the full set of parameters is

L(θ, ν) = Px(x|θ, ν)Py(y|ν) . (39.17)

Note that in this case if one wants to simulate the experiment by means of Monte
Carlo, both the primary and control measurements, x and y, must be generated for each
repetition under assumption of fixed values for the parameters θ and ν.

Using all of the parameters (θ, ν) in Eq. (39.13) to find the statistical errors in the
parameters of interest θ is equivalent to using the profile likelihood, which depends only
on θ. It is defined as

Lp(θ) = L(θ, ̂̂ν(θ)), (39.18)

where the double-hat notation indicates the profiled values of the parameters ν, defined
as the values that maximize L for the specified θ. The profile likelihood is discussed
further in Section 39.3.2.1 in connection with hypothesis tests.
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8 39. Statistics

39.2.3. The method of least squares :

The method of least squares (LS) coincides with the method of maximum likelihood in
the following special case. Consider a set of N independent measurements yi at known
points xi. The measurement yi is assumed to be Gaussian distributed with mean µ(xi; θ)
and known variance σ2

i . The goal is to construct estimators for the unknown parameters
θ. The log-likelihood function contains the sum of squares

χ2(θ) = −2 lnL(θ) + constant =
N∑

i=1

(yi − µ(xi; θ))2

σ2
i

. (39.19)

The parameter values that maximize L are the same as those which minimize χ2.

The minimum of the chi-square function in Equation (39.19) defines the least-squares

estimators θ̂ for the more general case where the yi are not Gaussian distributed as long
as they are independent. If they are not independent but rather have a covariance matrix
Vij = cov[yi, yj ], then the LS estimators are determined by the minimum of

χ2(θ) = (y − µ(θ))T V −1(y − µ(θ)) , (39.20)

where y = (y1, . . . , yN ) is the (column) vector of measurements, µ(θ) is the corresponding
vector of predicted values, and the superscript T denotes the transpose. If the yi are not
Gaussian distributed, then the LS and ML estimators will not in general coincide.

Often one further restricts the problem to the case where µ(xi; θ) is a linear function
of the parameters, i.e.,

µ(xi; θ) =

m∑

j=1

θjhj(xi) . (39.21)

Here the hj(x) are m linearly independent functions, e.g., 1, x, x2, . . . , xm−1 or Legendre
polynomials. We require m < N and at least m of the xi must be distinct.

Minimizing χ2 in this case with m parameters reduces to solving a system of m
linear equations. Defining Hij = hj(xi) and minimizing χ2 by setting its derivatives with
respect to the θi equal to zero gives the LS estimators,

θ̂ = (HT V −1H)−1HT V −1y ≡ Dy . (39.22)

The covariance matrix for the estimators Uij = cov[θ̂i, θ̂j ] is given by

U = DV DT = (HT V −1H)−1 , (39.23)

or equivalently, its inverse U−1 can be found from

(U−1)ij =
1

2

∂2χ2

∂θi∂θj

∣∣∣∣
θ=θ̂

=
N∑

k,l=1

hi(xk)(V −1)klhj(xl) . (39.24)
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The LS estimators can also be found from the expression

θ̂ = Ug , (39.25)

where the vector g is defined by

gi =

N∑

j,k=1

yjhi(xk)(V −1)jk . (39.26)

For the case of uncorrelated yi, for example, one can use (39.25) with

(U−1)ij =
N∑

k=1

hi(xk)hj(xk)

σ2
k

, (39.27)

gi =

N∑

k=1

ykhi(xk)

σ2
k

. (39.28)

Expanding χ2(θ) about θ̂, one finds that the contour in parameter space defined by

χ2(θ) = χ2(θ̂) + 1 = χ2
min + 1 (39.29)

has tangent planes located at approximately plus-or-minus-one standard deviation σ
θ̂

from the LS estimates θ̂.

In constructing the quantity χ2(θ) one requires the variances or, in the case of
correlated measurements, the covariance matrix. Often these quantities are not known
a priori and must be estimated from the data. An important example is where the
measured value yi represents the event count in a histogram bin. If, for example, yi

represents a Poisson variable, for which the variance is equal to the mean, then one can
either estimate the variance from the predicted value, µ(xi; θ), or from the observed
number itself, yi. In the first option, the variances become functions of the parameters,
and as a result the estimators may need to be found numerically. The second option
can be undefined if yi is zero, and for small yi, the variance will be poorly estimated.
In either case, one should constrain the normalization of the fitted curve to the correct
value, i.e., one should determine the area under the fitted curve directly from the number
of entries in the histogram (see Ref. [8], Section 7.4). As noted in Sec. 39.2.2.1, this
issue is avoided when using the method of extended maximum likelihood with binned
data by minimizing Eq. (39.16). In that case if the expected number of events µtot does
not depend on the other fitted parameters θ, then its extended ML estimator is equal to
the observed total number of events.

As the minimum value of the χ2 represents the level of agreement between the
measurements and the fitted function, it can be used for assessing the goodness-of-fit; this
is discussed further in Section 39.3.2.
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39.2.4. Parameter estimation with constraints :

In some applications one is interested in using a set of measured quantities
y = (y1, . . . , yN ) to estimate a set of parameters θ = (θ1, . . . , θM ) subject to a number of
constraints. For example, one may have measured coordinates from two tracks, and one
wishes to estimate their momentum vectors subject to the constraint that the tracks have
a common vertex. The parameters can also include momenta of undetected particles such
as neutrinos, as long as the constraints from conservation of energy and momentum and
from known masses of particles involved in the reaction chain provide enough information
for these quantities to be inferred.

A set of K constraints can be given in the form of equations

ck(θ) = 0 , k = 1, . . . , K . (39.30)

In some problems it may be possible to define a new set of parameters η = (η1, . . . , ηL)
with L = M − K such that every point in η-space automatically satisfies the constraints.
If this is possible then the problem reduces to one of estimating η with, e.g., maximum
likelihood or least squares and then transforming the estimators back into θ-space.

In many cases it may be difficult or impossible to find an appropriate transformation
η(θ). Suppose that the parameters are determined through minimizing an objective
function such as χ2(θ) in the method of least squares. Here one may enforce the
constraints by finding the stationary points of the Lagrange function

L(θ, λ, y) = χ2(θ, y) +

K∑

k=1

λkck(θ) (39.31)

with respect to both the parameters θ and a set of Lagrange multipliers λ = (λ1, . . . , λK).
Combining the parameters and Lagrange multipliers into an (M + K)-component vector
γ = (θ1, . . . , θM , λ1, . . . , λK), the solutions for γ, i.e., the estimators γ̂, are found (e.g.,
numerically) from the system of equations

Fi(γ, y) ≡ ∂L
∂γi

= 0 , i = 1, . . . , M + K . (39.32)

To obtain the covariance matrix of the estimated parameters one can find solutions γ̃

corresponding to the expectation values of the data 〈y〉 and expand Fi(γ̂, y) to first order
about these values. This gives (see, e.g., Sec. 11.6 of Ref. [8]) linearized approximations
for the estimators, γ̂(y) ≈ γ̃ + C(y − 〈y〉), where the matrix C = −A−1B, and A and B
are given by

Aij =

[
∂Fi

∂γj

]

γ̃,〈y〉

and Bij =

[
∂Fi

∂yj

]

γ̃,〈y〉

. (39.33)

In practice the values 〈y〉 and corresponding solutions γ̃ are estimated using the data
from the actual measurement. Using this approximation for γ̂(y), one can find the
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covariance matrix Uij = cov[γ̂i, γ̂j ] of the the estimators for the γi in terms of that of the
data Vij = cov[yi, yj ] using error propagation (cf. Eqs. (39.42) and (39.43)),

U = CV CT . (39.34)

The upper-left M ×M block of the matrix U gives the covariance matrix for the estimated
parameters cov[θ̂i, θ̂j]. If the parameters are estimated using the method of least squares,

then the number of degrees of freedom for the distribution of the minimized χ2 is
increased by the number of constraints, i.e., it becomes N − M + K. Further details can
be found in, e.g., Ch. 7 of Ref. [31].

39.2.5. The Bayesian approach :

In the frequentist methods discussed above, probability is associated only with data,
not with the value of a parameter. This is no longer the case in Bayesian statistics,
however, which we introduce in this section. For general introductions to Bayesian
statistics see, e.g., Refs. [26–29].

Suppose the outcome of an experiment is characterized by a vector of data x, whose
probability distribution depends on an unknown parameter (or parameters) θ that we
wish to determine. In Bayesian statistics, all knowledge about θ is summarized by the
posterior p.d.f. p(θ|x), whose integral over any given region gives the degree of belief for θ

to take on values in that region, given the data x. It is obtained by using Bayes’ theorem,

p(θ|x) =
P (x|θ)π(θ)∫

P (x|θ′)π(θ′) dθ′
, (39.35)

where P (x|θ) is the likelihood function, i.e., the joint p.d.f. for the data viewed as a
function of θ, evaluated with the data actually obtained in the experiment, and π(θ) is
the prior p.d.f. for θ. Note that the denominator in Eq. (39.35) serves to normalize the
posterior p.d.f. to unity.

As it can be difficult to report the full posterior p.d.f. p(θ|x), one would usually
summarize it with statistics such as the mean (or median) value, and covariance matrix.
In addition one may construct intervals with a given probability content, as is discussed
in Sec. 39.4.1 on Bayesian interval estimation.

39.2.5.1. Priors:

Bayesian statistics supplies no unique rule for determining the prior π(θ); this reflects
the analyst’s subjective degree of belief (or state of knowledge) about θ before the
measurement was carried out. For the result to be of value to the broader community,
whose members may not share these beliefs, it is important to carry out a sensitivity
analysis, that is, to show how the result changes under a reasonable variation of the prior
probabilities.

One might like to construct π(θ) to represent complete ignorance about the parameters
by setting it equal to a constant. A problem here is that if the prior p.d.f. is flat in θ,
then it is not flat for a nonlinear function of θ, and so a different parametrization of the
problem would lead in general to a non-equivalent posterior p.d.f.
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For the special case of a constant prior, one can see from Bayes’ theorem (39.35) that
the posterior is proportional to the likelihood, and therefore the mode (peak position)
of the posterior is equal to the ML estimator. The posterior mode, however, will change
in general upon a transformation of parameter. One may use as the Bayesian estimator
a summary statistic other than the mode, such as the median, which is invariant under
parameter transformation. But this will not in general coincide with the ML estimator.

The difficult and subjective nature of encoding personal knowledge into priors has led
to what is called objective Bayesian statistics, where prior probabilities are based not on
an actual degree of belief but rather derived from formal rules. These give, for example,
priors which are invariant under a transformation of parameters, or ones which result in
a maximum gain in information for a given set of measurements. For an extensive review
see, e.g., [30].

Objective priors do not in general reflect degree of belief, but they could in some
cases be taken as possible, although perhaps extreme, subjective priors. The posterior
probabilities as well therefore do not necessarily reflect a degree of belief. However one
may regard investigating a variety of objective priors to be an important part of the
sensitivity analysis. Furthermore, use of objective priors with Bayes’ theorem can be
viewed as a recipe for producing estimators or intervals which have desirable frequentist
properties.

An important procedure for deriving objective priors is due to Jeffreys. According to
Jeffreys’ rule one takes the prior as

π(θ) ∝
√

det(I(θ)) , (39.36)

where

Iij(θ) = −E

[
∂2 lnP (x|θ)

∂θi∂θj

]
(39.37)

is the Fisher information matrix. One can show that the Jeffreys prior leads to inference
that is invariant under a transformation of parameters. One should note that the Jeffreys
prior does not in general correspond to one’s degree of belief about the value of a
parameter. As examples, the Jeffreys prior for the mean µ of a Gaussian distribution is a
constant, and for the mean of a Poisson distribution one finds π(µ) ∝ 1/

√
µ.

Neither the constant nor 1/
√

µ priors can be normalized to unit area and are therefore
said to be improper. This can be allowed because the prior always appears multiplied by
the likelihood function, and if the likelihood falls to zero sufficiently quickly then one may
have a normalizable posterior density.

An important type of objective prior is the reference prior due to Bernardo and
Berger [32]. To find the reference prior for a given problem one considers the Kullback-
Leibler divergence Dn[π, p] of the posterior p(θ|x) relative to a prior π(θ), obtained from
a set of i.i.d. data x = (x1, . . . , xn):

Dn[π, p] =

∫
p(θ|x) ln

p(θ|x)

π(θ)
dθ . (39.38)
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This is effectively a measure of the gain in information provided by the data. The
reference prior is chosen so that the expectation value of this information gain is
maximized for the limiting case of n → ∞, where the expectation is computed with
respect to the marginal distribution of the data,

p(x) =

∫
p(x|θ)π(θ) dθ . (39.39)

For a single, continuous parameter the reference prior is usually identical to the Jeffreys
prior. In the multiparameter case an iterative algorithm exists, which requires sorting the
parameters by order of inferential importance. Often the result does not depend on this
order, but when it does, this can be part of a sensitivity analysis. Further discussion and
applications to particle physics problems can be found in Ref. [33].

39.2.5.2. Bayesian treatment of nuisance parameters:

As discussed in Sec. 39.2.2, a model may depend on parameters of interest θ as well
as on nuisance parameters ν, which must be included for an accurate description of
the data. Knowledge about the values of ν may be supplied by control measurements,
theoretical insights, physical constraints, etc. Suppose, for example, one has data y from
a control measurement which is characterized by a probability Py(y|ν). Suppose further
that before carrying out the control measurement one’s state of knowledge about ν is
described by an initial prior π0(ν), which in practice is often taken to be a constant or in
any case very broad. By using Bayes’ theorem (39.1) one obtains the updated prior π(ν)
(i.e., now π(ν) = π(ν|y), the probability for ν given y),

π(ν|y) ∝ P (y|ν)π0(ν) . (39.40)

In the absence of a model for P (y|ν) one may make some reasonable but ad hoc choices.
For a single nuisance parameter ν, for example, one might characterize the uncertainty by
a p.d.f. π(ν) centered about its nominal value with a certain standard deviation σν . Often
a Gaussian p.d.f. provides a reasonable model for one’s degree of belief about a nuisance
parameter; in other cases, more complicated shapes may be appropriate. If, for example,
the parameter represents a non-negative quantity then a log-normal or gamma p.d.f. can
be a more natural choice than a Gaussian truncated at zero. Note also that truncation of
the prior of a nuisance parameter ν at zero will in general make π(ν) nonzero at ν = 0,
which can lead to an unnormalizable posterior for a parameter of interest that appears
multiplied by ν.

The likelihood function, prior, and posterior p.d.f.s all depend on both θ and ν, and
are related by Bayes’ theorem, as usual. Note that the likelihood here only refers to the
primary measurement x. Once any control measurements y are used to find the updated
prior π(ν) for the nuisance parameters, this information is fully encapsulated in π(ν) and
the control measurements do not appear further.

One can obtain the posterior p.d.f. for θ alone by integrating over the nuisance
parameters, i.e.,

p(θ|x) =

∫
p(θ, ν|x) dν . (39.41)
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14 39. Statistics

Such integrals can often not be carried out in closed form, and if the number of nuisance
parameters is large, then they can be difficult to compute with standard Monte Carlo
methods. Markov Chain Monte Carlo (MCMC) techniques are often used for computing
integrals of this type (see Sec. 40.5).

39.2.6. Propagation of errors :

Consider a set of n quantities θ = (θ1, . . . , θn) and a set of m functions η(θ) =

(η1(θ), . . . , ηm(θ)). Suppose we have estimated θ̂ = (θ̂1, . . . , θ̂n), using, say, maximum-
likelihood or least-squares, and we also know or have estimated the covariance matrix
Vij = cov[θ̂i, θ̂j ]. The goal of error propagation is to determine the covariance matrix for

the functions, Uij = cov[η̂i, η̂j ], where η̂ = η(θ̂ ). In particular, the diagonal elements
Uii = V [η̂i] give the variances. The new covariance matrix can be found by expanding the

functions η(θ) about the estimates θ̂ to first order in a Taylor series. Using this one finds

Uij ≈
∑

k,l

∂ηi

∂θk

∂ηj

∂θl

∣∣∣∣
θ̂

Vkl . (39.42)

This can be written in matrix notation as U ≈ AV AT where the matrix of derivatives A
is

Aij =
∂ηi

∂θj

∣∣∣∣
θ̂

, (39.43)

and AT is its transpose. The approximation is exact if η(θ) is linear (it holds, for
example, in Equation (39.23)). If this is not the case, the approximation can break down

if, for example, η(θ) is significantly nonlinear close to θ̂ in a region of a size comparable

to the standard deviations of θ̂.

39.3. Statistical tests

In addition to estimating parameters, one often wants to assess the validity of certain
statements concerning the data’s underlying distribution. Frequentist hypothesis tests,
described in Sec. 39.3.1, provide a rule for accepting or rejecting hypotheses depending on
the outcome of a measurement. In significance tests, covered in Sec. 39.3.2, one gives the
probability to obtain a level of incompatibility with a certain hypothesis that is greater
than or equal to the level observed with the actual data. In the Bayesian approach, the
corresponding procedure is based fundamentally on the posterior probabilities of the
competing hypotheses. In Sec. 39.3.3 we describe a related construct called the Bayes
factor, which can be used to quantify the degree to which the data prefer one or another
hypothesis.
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39.3.1. Hypothesis tests :

A frequentist test of a hypothesis (often called the null hypothesis, H0) is a rule that
states for which data values x the hypothesis is rejected. A region of x-space called the
critical region, w, is specified such that there is no more than a given probability under
H0, α, called the size or significance level of the test, to find x ∈ w. If the data are
discrete, it may not be possible to find a critical region with exact probability content α,
and thus we require P (x ∈ w|H0) ≤ α. If the data are observed in the critical region, H0

is rejected.

The data x used to construct a test could be, for example, a set of values that
characterizes an individual event. In this case the test corresponds to classification as,
e.g., signal or background. Alternatively the data could represent a set of values from
a collection of events. Often one is interested in knowing whether all of the events are
of a certain type (background), or whether the sample contains at least some events of
a new type (signal). Here the background-only hypothesis plays the role of H0, and in
the alternative H1 both signal and background are present. Rejecting H0 is, from the
standpoint of frequentist statistics, the required step to establish discovery of the signal
process.

The critical region is not unique. Its choice should take into account the probabilities
for the data predicted by some alternative hypothesis (or set of alternatives) H1.
Rejecting H0 if it is true is called a type-I error, and occurs by construction with
probability no greater than α. Not rejecting H0 if an alternative H1 is true is called a
type-II error, and for a given test this will have a certain probability β = P (x /∈ w|H1).
The quantity 1 − β is called the power of the test of H0 with respect to the alternative
H1. A strategy for defining the critical region can therefore be to maximize the power
with respect to some alternative (or alternatives) given a fixed size α.

To maximize the power of a test of H0 with respect to the alternative H1, the
Neyman–Pearson lemma states that the critical region w should be chosen such that for
all data values x inside w, the likelihood ratio

λ(x) =
f(x|H1)

f(x|H0)
(39.44)

is greater than or equal to a given constant cα, and everywhere outside the critical
region one has λ(x) < cα, where the value of cα is determined by the size of the test α.
Here H0 and H1 must be simple hypotheses, i.e., they should not contain undetermined
parameters.

It is convenient to define the test using a scalar function of the data x called a
test statistic, t(x), such that the boundary of the critical region is given by a surface
of constant t(x). The Neyman–Pearson lemma is equivalent to the statement that the
likelihood ratio (39.44) represents the optimal test statistic. It can be difficult in practice,
however, to determine λ(x), since this requires knowledge of the joint p.d.f.s f(x|H0) and
f(x|H1). Often one does not have explicit formulae for these, but rather Monte Carlo
models that allow one to generate instances of x that follow the p.d.f.s.

In the case where the likelihood ratio (39.44) cannot be used explicitly, there exist a
variety of other multivariate methods for constructing a test statistic that may approach
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its performance. These are based on machine-learning algorithms that use samples
of training data corresponding to the hypotheses in question, often generated from
Monte Carlo models. Methods often used in HEP include Fisher Discriminants, Neural
Networks, Boosted Decision Trees and Support Vector Machines. Descriptions of these
and other methods can be found in Refs. [11–14] and Proceedings of the PHYSTAT
conference series [15]. Software for HEP includes the TMVA [16] and scikit-learn [18]
packages.

An important issue in constructing a test is the choice of variables that enter into
the data vector x. For purposes of classification one may choose, for example, to form
certain functions of particle momenta such as, e.g., invariant masses that are felt to be
physically meaningful in the context of a particular event type. It may be difficult to
know, however, whether there may exist further features that would help distinguish
between signal and background. Recently, so-called Deep Neural Networks containing
several or more hidden layers have been applied in HEP [19]; these allow one to use
directly as inputs the elements of the data vector x (features) that represent lower-level
quantities such as individual particle momenta, rather than needing to first construct
“by hand” higher level features. Each hidden layer then allows the network to construct
significant high-level features in an automatic way.

The multivariate algorithms designed to classify events into signal and background
types also form the basis of tests of the hypothesis that a sample of events consists of
background only. Such a test can be constructed using the distributions of the test statistic
t(x) for event classification obtained from a multivariate algorithm such as a Neural
Network output. The distributions p(t|s) and p(t|b) for signal and background events,
respectively, are used to construct the likelihood ratio of the signal-plus-background
hypothesis relative to that of background only. To the extent that the test statistic t(x)
approximates the likelihood ratio (or a monotonic function thereof) for individual events
given by (39.44), the resulting test of the background-only hypothesis for the event
sample will have maximum power with respect to the signal-plus-background alternative
(see Ref. [20]) .

39.3.2. Tests of significance (goodness-of-fit) :

Often one wants to quantify the level of agreement between the data and a hypothesis
without explicit reference to alternative hypotheses. This can be done by defining a
statistic t whose value reflects in some way the level of agreement between the data and
the hypothesis. The analyst must decide what values of the statistic correspond to better
or worse levels of agreement with the hypothesis in question; the choice will in general
depend on the relevant alternative hypotheses.

The hypothesis in question, H0, will determine the p.d.f. f(t|H0) for the statistic.
The significance of a discrepancy between the data and what one expects under the
assumption of H0 is quantified by giving the p-value, defined as the probability to find t in
the region of equal or lesser compatibility with H0 than the level of compatibility observed
with the actual data. For example, if t is defined such that large values correspond to
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poor agreement with the hypothesis, then the p-value would be

p =

∫ ∞

tobs

f(t|H0) dt , (39.45)

where tobs is the value of the statistic obtained in the actual experiment.

The p-value should not be confused with the size (significance level) of a test, or the
confidence level of a confidence interval (Section 39.4), both of which are pre-specified
constants. We may formulate a hypothesis test, however, by defining the critical region
to correspond to the data outcomes that give the lowest p-values, so that finding p ≤ α
implies that the data outcome was in the critical region. When constructing a p-value,
one generally chooses the region of data space deemed to have lower compatibility with
the model being tested as one having higher compatibility with a given alternative, such
that the corresponding test will have a high power with respect to this alternative.

The p-value is a function of the data, and is therefore itself a random variable. If
the hypothesis used to compute the p-value is true, then for continuous data p will be
uniformly distributed between zero and one. Note that the p-value is not the probability
for the hypothesis; in frequentist statistics, this is not defined.

When searching for a new phenomenon, one tries to reject the hypothesis H0 that
the data are consistent with known (e.g., Standard Model) processes. If the p-value of
H0 is sufficiently low, then one is willing to accept that some alternative hypothesis is
true. Often one converts the p-value into an equivalent significance Z, defined so that a
Z standard deviation upward fluctuation of a Gaussian random variable would have an
upper tail area equal to p, i.e.,

Z = Φ−1(1 − p) . (39.46)

Here Φ is the cumulative distribution of the standard Gaussian, and Φ−1 is its inverse
(quantile) function. Often in HEP the level of significance where an effect is said to
qualify as a discovery is Z = 5, i.e., a 5σ effect, corresponding to a p-value of 2.87× 10−7.
One’s actual degree of belief that a new process is present, however, will depend in
general on other factors as well, such as the plausibility of the new signal hypothesis
and the degree to which it can describe the data, one’s confidence in the model that led
to the observed p-value, and possible corrections for multiple observations out of which
one focuses on the smallest p-value obtained (the “look-elsewhere effect”, discussed in
Section 39.3.2.2).

39.3.2.1. Treatment of nuisance parameters for frequentist tests:

Suppose one wants to test hypothetical values of parameters θ, but the model also
contains nuisance parameters ν. To find a p-value for θ we can construct a test statistic
qθ such that larger values constitute increasing incompatibility between the data and the
hypothesis. Then for an observed value of the statistic qθ,obs, the p-value of θ is

pθ(ν) =

∫ ∞

qθ,obs

f(qθ|θ, ν) dqθ , (39.47)
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which depends in general on the nuisance parameters ν. In the strict frequentist approach,
θ is rejected only if the p-value is less than α for all possible values of the nuisance
parameters.

The difficulty described above is effectively solved if we can define the test statistic
qθ in such a way that its distribution f(qθ|θ) is independent of the nuisance parameters.
Although exact independence is only found in special cases, it can be achieved
approximately by use of the profile likelihood ratio. This is given by the profile likelihood
from Eq.(39.18) divided by the value of the likelihood at its maximum, i.e., when

evaluated with the ML estimators θ̂ and ν̂:

λp(θ) =
L(θ, ̂̂ν(θ))

L(θ̂, ν̂)
. (39.48)

Wilks’ theorem [10] states that, providing certain general conditions are satisfied, the
distribution of −2 lnλp(θ), under assumption of θ, approaches a χ2 distribution in the
limit where the data sample is very large, independent of the values of the nuisance
parameters ν. Here the number of degrees of freedom is equal to the number of
components of θ. More details on use of the profile likelihood are given in Refs. [41–42]
and in contributions to the PHYSTAT conferences [15]; explicit formulae for special
cases can be found in Ref. [43]. Further discussion on how to incorporate systematic
uncertainties into p-values can be found in Ref. [21].

Even with use of the profile likelihood ratio, for a finite data sample the p-value
of hypothesized parameters θ will retain in general some dependence on the nuisance
parameters ν. Ideally one would find the the maximum of pθ(ν) from Eq. (39.47)
explicitly, but that is often impractical. An approximate and computationally feasible

technique is to use pθ(
̂̂ν(θ)), where ̂̂ν(θ) are the profiled values of the nuisance parameters

as defined in Section 39.2.2.2. The resulting p-value is correct if the true values of the
nuisance parameters are equal to the profiled values used; otherwise it could be either too
high or too low. This is discussed further in Section 39.4.2 on confidence intervals.

One may also treat model uncertainties in a Bayesian manner but then use the resulting
model in a frequentist test. Suppose the uncertainty in a set of nuisance parameters ν is
characterized by a Bayesian prior p.d.f. π(ν). This can be used to construct the marginal
(also called the prior predictive) model for the data x and parameters of interest θ,

Pm(x|θ) =

∫
P (x|θ, ν)π(ν) dν . (39.49)

The marginal model does not represent the probability of data that would be generated
if one were really to repeat the experiment, as in that case one would assume that the
nuisance parameters do not vary. Rather, the marginal model represents a situation in
which every repetition of the experiment is carried out with new values of ν, randomly
sampled from π(ν). It is in effect an average of models each with a given ν, where the
average is carried out with respect to the prior p.d.f. π(ν).
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The marginal model for the data x can be used to determine the distribution of a test
statistic Q, which can be written

Pm(Q|θ) =

∫
P (Q|θ, ν)π(ν) dν . (39.50)

In a search for a new signal process, the test statistic can be based on the ratio of
likelihoods corresponding to the experiments where signal and background events are both
present, Ls+b, to that of background only, Lb. Often the likelihoods are evaluated with
the profiled values of the nuisance parameters, which may give improved performance.
It is important to note, however, that it is through use of the marginal model for
the distribution of Q that the uncertainties related to the nuisance parameters are
incorporated into the result of the test. Different choices for the test statistic itself only
result in variations of the power of the test with respect to different alternatives.

39.3.2.2. The look-elsewhere effect:

The “look-elsewhere effect” relates to multiple measurements used to test a single
hypothesis. The classic example is when one searches in a distribution for a peak whose
position is not predicted in advance. Here the no-peak hypothesis is tested using data
in a given range of the distribution. In the frequentist approach the correct p-value of
the no-peak hypothesis is the probability, assuming background only, to find a signal
as significant as the one found or more so anywhere in the search region. This can be
substantially higher than the probability to find a peak of equal or greater significance in
the particular place where it appeared. There is in general some ambiguity as to what
constitutes the relevant search region or even the broader set of relevant measurements.
Although the desired p-value is well defined once the search region has been fixed, an
exact treatment can require extensive computation.

The “brute-force” solution to this problem by Monte Carlo involves generating data
under the background-only hypothesis and for each data set, fitting a peak of unknown
position and recording a measure of its significance. To establish a discovery one often
requires a p-value smaller than 2.87 × 10−7, corresponding to a 5σ or larger effect.
Determining this with Monte Carlo thus requires generating and fitting a very large
number of experiments, perhaps several times 107. In contrast, if the position of the peak
is fixed, then the fit to the distribution is much easier, and furthermore one can in many
cases use formulae valid for sufficiently large samples that bypass completely the need for
Monte Carlo (see, e.g., [43]) . However, this fixed-position or “local” p-value would not
be correct in general, as it assumes the position of the peak was known in advance.

A method that allows one to modify the local p-value computed under assumption of a
fixed position to obtain an approximation to the correct “global” value using a relatively
simple calculation is described in Ref. [22]. Suppose a test statistic q0, defined so
that larger values indicate increasing disagreement with the data, is observed to have a
value u. Furthermore suppose the model contains a nuisance parameter θ (such as the
peak position) which is only defined under the signal model (there is no peak in the
background-only model). An approximation for the global p-value is found to be

pglobal ≈ plocal + 〈Nu〉 , (39.51)
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where 〈Nu〉, which is much smaller than one in cases of interest, is the mean number of
“upcrossings” of the statistic q0 above the level u in the range of the nuisance parameter
considered (e.g., the mass range).

The value of 〈Nu〉 can be estimated from the number of upcrossings 〈Nu0
〉 above some

much lower value, u0, by using a relation due to Davis [23],

〈Nu〉 ≈ 〈Nu0
〉e−(u−u0)/2 . (39.52)

By choosing u0 sufficiently low, the value of 〈Nu〉 can be estimated by simulating only a
very small number of experiments, or even from the observed data, rather than the 107

needed if one is dealing with a 5σ effect.

39.3.2.3. Goodness-of-fit with the method of least squares:

When estimating parameters using the method of least squares, one obtains the
minimum value of the quantity χ2 (39.19). This statistic can be used to test the
goodness-of-fit, i.e., the test provides a measure of the significance of a discrepancy
between the data and the hypothesized functional form used in the fit. It may also
happen that no parameters are estimated from the data, but that one simply wants to
compare a histogram, e.g., a vector of Poisson distributed numbers n = (n1, . . . , nN ),
with a hypothesis for their expectation values µi = E[ni]. As the distribution is Poisson
with variances σ2

i = µi, the χ2 (39.19) becomes Pearson’s χ2 statistic,

χ2 =
N∑

i=1

(ni − µi)
2

µi
. (39.53)

If the hypothesis µ = (µ1, . . . , µN ) is correct, and if the expected values µi in (39.53) are
sufficiently large (or equivalently, if the measurements ni can be treated as following a
Gaussian distribution), then the χ2 statistic will follow the χ2 p.d.f. with the number of
degrees of freedom equal to the number of measurements N minus the number of fitted
parameters.

Alternatively, one may fit parameters and evaluate goodness-of-fit by minimizing
−2 lnλ from Eq. (39.16). One finds that the distribution of this statistic approaches the
asymptotic limit faster than does Pearson’s χ2. Therefore if one uses the asymptotic
χ2 p.d.f. as the statistic’s approximate sampling distribution to compute a p-value, one
obtains in general a more accurate result from −2 lnλ than from Pearson’s χ2 (see
Ref. [9] and references therein).

Assuming the goodness-of-fit statistic follows a χ2 p.d.f., the p-value for the hypothesis
is then

p =

∫ ∞

χ2
f(z; nd) dz , (39.54)

where f(z; nd) is the χ2 p.d.f. and nd is the appropriate number of degrees of freedom.
Values are shown in Fig. 39.1 or obtained from the ROOT function TMath::Prob. If the
conditions for using the χ2 p.d.f. do not hold, the statistic can still be defined as before,
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Figure 39.1: One minus the χ2 cumulative distribution, 1−F (χ2; n), for n degrees
of freedom. This gives the p-value for the χ2 goodness-of-fit test as well as one
minus the coverage probability for confidence regions (see Sec. 39.4.2.2).

but its p.d.f. must be determined by other means in order to obtain the p-value, e.g.,
using a Monte Carlo calculation.

Since the mean of the χ2 distribution is equal to nd, one expects in a “reasonable”
experiment to obtain χ2 ≈ nd. Hence the quantity χ2/nd is sometimes reported. Since
the p.d.f. of χ2/nd depends on nd, however, one must report nd as well if one wishes to
determine the p-value. The p-values obtained for different values of χ2/nd are shown in
Fig. 39.2.

If the minimized χ2 value indicates a low level of agreement between data and
hypothesis, one may be tempted to expect a high degree of uncertainty for any
fitted parameters. Poor goodness-of-fit, however, does not mean that one will have
large statistical errors for parameter estimates. If, for example, the error bars (or
covariance matrix) used in constructing the χ2 are underestimated, then this will lead
to underestimated statistical errors for the fitted parameters. The standard deviations
of estimators that one finds from, say, Eq. (39.13) reflect how widely the estimates
would be distributed if one were to repeat the measurement many times, assuming that
the hypothesis and measurement errors used in the χ2 are also correct. They do not
include the systematic error which may result from an incorrect hypothesis or incorrectly
estimated measurement errors in the χ2.

June 5, 2018 19:58



22 39. Statistics

0 10 20 30 40 50
0.0

0.5

1.0

1.5

2.0

2.5

Degrees of freedom n

50%

10%

90%

99%

95%

68%

32%

5%

1%

χ2/n

Figure 39.2: The ‘reduced’ χ2, equal to χ2/n, for n degrees of freedom. The
curves show as a function of n the χ2/n that corresponds to a given p-value.

39.3.3. Bayes factors :

In Bayesian statistics, all of one’s knowledge about a model is contained in its posterior
probability, which one obtains using Bayes’ theorem (Eq. (39.35)). Thus one could reject
a hypothesis H if its posterior probability P (H|x) is sufficiently small. The difficulty
here is that P (H|x) is proportional to the prior probability P (H), and there will not be a
consensus about the prior probabilities for the existence of new phenomena. Nevertheless
one can construct a quantity called the Bayes factor (described below), which can be
used to quantify the degree to which the data prefer one hypothesis over another, and is
independent of their prior probabilities.

Consider two models (hypotheses), Hi and Hj , described by vectors of parameters θi

and θj , respectively. Some of the components will be common to both models and others
may be distinct. The full prior probability for each model can be written in the form

π(Hi, θi) = P (Hi)π(θi|Hi) . (39.55)

Here P (Hi) is the overall prior probability for Hi, and π(θi|Hi) is the normalized p.d.f. of
its parameters. For each model, the posterior probability is found using Bayes’ theorem,

P (Hi|x) =

∫
P (x|θi, Hi)P (Hi)π(θi|Hi) dθi

P (x)
, (39.56)

where the integration is carried out over the internal parameters θi of the model. The
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ratio of posterior probabilities for the models is therefore

P (Hi|x)

P (Hj |x)
=

∫
P (x|θi, Hi)π(θi|Hi) dθi∫
P (x|θj , Hj)π(θj |Hj) dθj

P (Hi)

P (Hj)
. (39.57)

The Bayes factor is defined as

Bij =

∫
P (x|θi, Hi)π(θi|Hi) dθi∫
P (x|θj , Hj)π(θj |Hj) dθj

. (39.58)

This gives what the ratio of posterior probabilities for models i and j would be if the
overall prior probabilities for the two models were equal. If the models have no nuisance
parameters, i.e., no internal parameters described by priors, then the Bayes factor is
simply the likelihood ratio. The Bayes factor therefore shows by how much the probability
ratio of model i to model j changes in the light of the data, and thus can be viewed as a
numerical measure of evidence supplied by the data in favour of one hypothesis over the
other.

Although the Bayes factor is by construction independent of the overall prior
probabilities P (Hi) and P (Hj), it does require priors for all internal parameters of a
model, i.e., one needs the functions π(θi|Hi) and π(θj |Hj). In a Bayesian analysis where
one is only interested in the posterior p.d.f. of a parameter, it may be acceptable to
take an unnormalizable function for the prior (an improper prior) as long as the product
of likelihood and prior can be normalized. But improper priors are only defined up
to an arbitrary multiplicative constant, and so the Bayes factor would depend on this
constant. Furthermore, although the range of a constant normalized prior is unimportant
for parameter determination (provided it is wider than the likelihood), this is not so
for the Bayes factor when such a prior is used for only one of the hypotheses. So to
compute a Bayes factor, all internal parameters must be described by normalized priors
that represent meaningful probabilities over the entire range where they are defined.

An exception to this rule may be considered when the identical parameter appears in
the models for both numerator and denominator of the Bayes factor. In this case one
can argue that the arbitrary constants would cancel. One must exercise some caution,
however, as parameters with the same name and physical meaning may still play different
roles in the two models.

Both integrals in Equation (39.58) are of the form

m =

∫
P (x|θ)π(θ) dθ , (39.59)

which is the marginal likelihood seen previously in Eq. (39.49) (in some fields this
quantity is called the evidence). Computing marginal likelihoods can be difficult; in many
cases it can be done with the nested sampling algorithm [35] as implemented, e.g., in the
program MultiNest [36]. A review of Bayes factors can be found in Ref. [37].
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39.4. Intervals and limits

When the goal of an experiment is to determine a parameter θ, the result is usually
expressed by quoting, in addition to the point estimate, some sort of interval which
reflects the statistical precision of the measurement. In the simplest case, this can be
given by the parameter’s estimated value θ̂ plus or minus an estimate of the standard
deviation of θ̂, σ̂

θ̂
. If, however, the p.d.f. of the estimator is not Gaussian or if there

are physical boundaries on the possible values of the parameter, then one usually quotes
instead an interval according to one of the procedures described below.

In reporting an interval or limit, the experimenter may wish to

• communicate as objectively as possible the result of the experiment;

• provide an interval that is constructed to cover on average the true value of the
parameter with a specified probability;

• provide the information needed by the consumer of the result to draw conclusions
about the parameter or to make a particular decision;

• draw conclusions about the parameter that incorporate stated prior beliefs.

With a sufficiently large data sample, the point estimate and standard deviation (or
for the multiparameter case, the parameter estimates and covariance matrix) satisfy
essentially all of these goals. For finite data samples, no single method for quoting an
interval will achieve all of them.

In addition to the goals listed above, the choice of method may be influenced
by practical considerations such as ease of producing an interval from the results of
several measurements. Of course the experimenter is not restricted to quoting a single
interval or limit; one may choose, for example, first to communicate the result with a
confidence interval having certain frequentist properties, and then in addition to draw
conclusions about a parameter using a judiciously chosen subjective Bayesian prior. It
is recommended, however, that there be a clear separation between these two aspects of
reporting a result. In the remainder of this section, we assess the extent to which various
types of intervals achieve the goals stated here.

39.4.1. Bayesian intervals :

As described in Sec. 39.2.5, a Bayesian posterior probability may be used to determine
regions that will have a given probability of containing the true value of a parameter.
In the single parameter case, for example, an interval (called a Bayesian or credible
interval) [θlo, θup] can be determined which contains a given fraction 1−α of the posterior
probability, i.e.,

1 − α =

∫ θup

θlo

p(θ|x) dθ . (39.60)

Sometimes an upper or lower limit is desired, i.e., θlo or θup can be set to a physical
boundary or to plus or minus infinity. In other cases, one might be interested in the set
of θ values for which p(θ|x) is higher than for any θ not belonging to the set, which may
constitute a single interval or a set of disjoint regions; these are called highest posterior
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density (HPD) intervals. Note that HPD intervals are not invariant under a nonlinear
transformation of the parameter.

If a parameter is constrained to be non-negative, then the prior p.d.f. can simply be
set to zero for negative values. An important example is the case of a Poisson variable n,
which counts signal events with unknown mean s, as well as background with mean b,
assumed known. For the signal mean s, one often uses the prior

π(s) =

{
0 s < 0
1 s ≥ 0

. (39.61)

This prior is regarded as providing an interval whose frequentist properties can be studied,
rather than as representing a degree of belief. For example, to obtain an upper limit on
s, one may proceed as follows. The likelihood for s is given by the Poisson distribution
for n with mean s + b,

P (n|s) =
(s + b)n

n!
e−(s+b) , (39.62)

along with the prior (39.61) in (39.35) gives the posterior density for s. An upper limit
sup at confidence level (or here, rather, credibility level) 1−α can be obtained by requiring

1 − α =

∫ sup

−∞
p(s|n)ds =

∫ sup

−∞ P (n|s) π(s) ds∫ ∞
−∞ P (n|s) π(s) ds

, (39.63)

where the lower limit of integration is effectively zero because of the cut-off in π(s). By
relating the integrals in Eq. (39.63) to incomplete gamma functions, the solution for the
upper limit is found to be

sup = 1
2F−1

χ2 [p, 2(n + 1)] − b , (39.64)

where F−1
χ2 is the quantile of the χ2 distribution (inverse of the cumulative distribution).

Here the quantity p is

p = 1 − α
(
1 − Fχ2 [2b, 2(n + 1)]

)
, (39.65)

where Fχ2 is the cumulative χ2 distribution. For both Fχ2 and F−1
χ2 above, the argument

2(n + 1) gives the number of degrees of freedom. For the special case of b = 0, the limit
reduces to

sup = 1
2F−1

χ2 (1 − α; 2(n + 1)) . (39.66)

It happens that for the case of b = 0, the upper limit from Eq. (39.66) coincides
numerically with the frequentist upper limit discussed in Section 39.4.2.3. Values for
1−α = 0.9 and 0.95 are given by the values µup in Table 39.3. The frequentist properties
of confidence intervals for the Poisson mean found in this way are discussed in Refs. [2]
and [25].

As in any Bayesian analysis, it is important to show how the result changes
under assumption of different prior probabilities. For example, one could consider the
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Jeffreys prior as described in Sec. 39.2.5. For this problem one finds the Jeffreys prior
π(s) ∝ 1/

√
s + b for s ≥ 0 and zero otherwise. As with the constant prior, one would not

regard this as representing one’s prior beliefs about s, both because it is improper and
also as it depends on b. Rather it is used with Bayes’ theorem to produce an interval
whose frequentist properties can be studied.

If the model contains nuisance parameters then these are eliminated by marginalizing,
as in Eq. (39.41), to obtain the p.d.f. for the parameters of interest. For example, if
the parameter b in the Poisson counting problem above were to be characterized by a
prior p.d.f. π(b), then one would first use Bayes’ theorem to find p(s, b|n). This is then
marginalized to find p(s|n) =

∫
p(s, b|n)π(b) db, from which one may determine an interval

for s. One may not be certain whether to extend a model by including more nuisance
parameters. In this case, a Bayes factor may be used to determine to what extent the
data prefer a model with additional parameters, as described in Section 39.3.3.

39.4.2. Frequentist confidence intervals :

The unqualified phrase “confidence intervals” refers to frequentist intervals obtained
with a procedure due to Neyman [34], described below. The boundary of the interval
(or in the multiparameter case, region) is given by a specific function of the data, which
would fluctuate if one were to repeat the experiment many times. The coverage probability
refers to the fraction of intervals in such an ensemble that contain the true parameter
value. Confidence intervals are constructed so as to have a coverage probability greater
than or equal to a given confidence level, regardless of the true parameter’s value. It is
important to note that in the frequentist approach, such a probability is not meaningful
for a fixed interval. In this section we discuss several techniques for producing intervals
that have, at least approximately, this property of coverage.

39.4.2.1. The Neyman construction for confidence intervals:

Consider a p.d.f. f(x; θ) where x represents the outcome of the experiment and θ is the
unknown parameter for which we want to construct a confidence interval. The variable
x could (and often does) represent an estimator for θ. Using f(x; θ), we can find using a
pre-defined rule and probability 1 − α for every value of θ, a set of values x1(θ, α) and
x2(θ, α) such that

P (x1 < x < x2; θ) =

∫ x2

x1

f(x; θ) dx ≥ 1 − α . (39.67)

If x is discrete, the integral is replaced by the corresponding sum. In that case there may
not exist a range of x values whose summed probability is exactly equal to a given value
of 1 − α, and one requires by convention P (x1 < x < x2; θ) ≥ 1 − α.

This is illustrated for continuous x in Fig. 39.3: a horizontal line segment
[x1(θ, α), x2(θ, α)] is drawn for representative values of θ. The union of such inter-
vals for all values of θ, designated in the figure as D(α), is known as a confidence belt.
Typically the curves x1(θ, α) and x2(θ, α) are monotonic functions of θ, which we assume
for this discussion.
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Figure 39.3: Construction of the confidence belt (see text).

Upon performing an experiment to measure x and obtaining a value x0, one draws
a vertical line through x0. The confidence interval for θ is the set of all values of θ for
which the corresponding line segment [x1(θ, α), x2(θ, α)] is intercepted by this vertical
line. Such confidence intervals are said to have a confidence level (CL) equal to 1 − α.

Now suppose that the true value of θ is θ0, indicated in the figure. We see from the
figure that θ0 lies between θ1(x) and θ2(x) if and only if x lies between x1(θ0) and x2(θ0).
The two events thus have the same probability, and since this is true for any value θ0, we
can drop the subscript 0 and obtain

1 − α = P (x1(θ) < x < x2(θ)) = P (θ2(x) < θ < θ1(x)) . (39.68)

In this probability statement, θ1(x) and θ2(x), i.e., the endpoints of the interval, are the
random variables and θ is an unknown constant. If the experiment were to be repeated
a large number of times, the interval [θ1, θ2] would vary, covering the fixed value θ in a
fraction 1 − α of the experiments.

The condition of coverage in Eq. (39.67) does not determine x1 and x2 uniquely, and
additional criteria are needed. One possibility is to choose central intervals such that the
probabilities to find x below x1 and above x2 are each α/2. In other cases, one may want
to report only an upper or lower limit, in which case one of P (x ≤ x1) or P (x ≥ x2) can
be set to α and the other to zero. Another principle based on likelihood ratio ordering
for determining which values of x should be included in the confidence belt is discussed
below.

When the observed random variable x is continuous, the coverage probability obtained
with the Neyman construction is 1 − α, regardless of the true value of the parameter.
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Because of the requirement P (x1 < x < x2) ≥ 1 − α when x is discrete, one obtains in
that case confidence intervals that include the true parameter with a probability greater
than or equal to 1 − α.

An equivalent method of constructing confidence intervals is to consider a test (see
Sec. 39.3) of the hypothesis that the parameter’s true value is θ (assume one constructs a
test for all physical values of θ). One then excludes all values of θ where the hypothesis
would be rejected in a test of size α or less. The remaining values constitute the confidence
interval at confidence level 1 − α. If the critical region of the test is characterized by
having a p-value pθ ≤ α, then the endpoints of the confidence interval are found in
practice by solving pθ = α for θ.

In the procedure outlined above, one is still free to choose the test to be used; this
corresponds to the freedom in the Neyman construction as to which values of the data
are included in the confidence belt. One possibility is to use a test statistic based on the
likelihood ratio,

λ(θ) =
f(x; θ)

f(x; θ̂ )
, (39.69)

where θ̂ is the value of the parameter which, out of all allowed values, maximizes f(x; θ).
This results in the intervals described in Ref. [38] by Feldman and Cousins. The same
intervals can be obtained from the Neyman construction described above by including in
the confidence belt those values of x which give the greatest values of λ(θ).

If the model contains nuisance parameters ν, then these can be incorporated into
the test (or the p-values) used to determine the limit by profiling as discussed in
Section 39.3.2.1. As mentioned there, the strict frequentist approach is to regard the
parameter of interest θ as excluded only if it is rejected for all possible values of ν. The
resulting interval for θ will then cover the true value with a probability greater than or
equal to the nominal confidence level for all points in ν-space.

If the p-value is based on the profiled values of the nuisance parameters, i.e., with

ν = ̂̂ν(θ) used in Eq. (39.47), then the resulting interval for the parameter of interest
will have the correct coverage if the true values of ν are equal to the profiled values.
Otherwise the coverage probability may be too high or too low. This procedure has been
called profile construction in HEP [24] (see also [21]) .

39.4.2.2. Gaussian distributed measurements:

An important example of constructing a confidence interval is when the data consists
of a single random variable x that follows a Gaussian distribution; this is often the case
when x represents an estimator for a parameter and one has a sufficiently large data
sample. If there is more than one parameter being estimated, the multivariate Gaussian
is used. For the univariate case with known σ, the probability that the measured value x
will fall within ±δ of the true value µ is

1 − α =
1√
2πσ

∫ µ+δ

µ−δ
e−(x−µ)2/2σ2

dx = erf

(
δ√
2 σ

)
= 2Φ

(
δ

σ

)
− 1 , (39.70)
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where erf is the Gaussian error function, which is rewritten in the final equality using
Φ, the Gaussian cumulative distribution. Fig. 39.4 shows a δ = 1.64σ confidence interval
unshaded. The choice δ = σ gives an interval called the standard error which has
1− α = 68.27% if σ is known. Values of α for other frequently used choices of δ are given
in Table 39.1.

−3 −2 −1 0 1 2 3

f (x; µ,σ)

α /2α /2

(x−µ) /σ

1−α

Figure 39.4: Illustration of a symmetric 90% confidence interval (unshaded) for
a Gaussian-distributed measurement of a single quantity. Integrated probabilities,
defined by α = 0.1, are as shown.

Table 39.1: Area of the tails α outside ±δ from the mean of a Gaussian
distribution.

α δ α δ

0.3173 1σ 0.2 1.28σ

4.55 ×10−2 2σ 0.1 1.64σ

2.7 ×10−3 3σ 0.05 1.96σ

6.3×10−5 4σ 0.01 2.58σ

5.7×10−7 5σ 0.001 3.29σ

2.0×10−9 6σ 10−4 3.89σ

We can set a one-sided (upper or lower) limit by excluding above x + δ (or below
x − δ). The values of α for such limits are half the values in Table 39.1.

The relation (39.70) can be re-expressed using the cumulative distribution function for
the χ2 distribution as

α = 1 − F (χ2; n) , (39.71)

for χ2 = (δ/σ)2 and n = 1 degree of freedom. This can be seen as the n = 1 curve in
Fig. 39.1 or obtained by using the ROOT function TMath::Prob.
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For multivariate measurements of, say, n parameter estimates θ̂ = (θ̂1, . . . , θ̂n), one

requires the full covariance matrix Vij = cov[θ̂i, θ̂j ], which can be estimated as described
in Sections 39.2.2 and 39.2.3. Under fairly general conditions with the methods of
maximum-likelihood or least-squares in the large sample limit, the estimators will be
distributed according to a multivariate Gaussian centered about the true (unknown)
values θ, and furthermore, the likelihood function itself will take on a Gaussian shape.

The standard error ellipse for the pair (θ̂i, θ̂j) is shown in Fig. 39.5, corresponding

to a contour χ2 = χ2
min + 1 or lnL = lnLmax − 1/2. The ellipse is centered about the

estimated values θ̂, and the tangents to the ellipse give the standard deviations of the
estimators, σi and σj . The angle of the major axis of the ellipse is given by

tan 2φ =
2ρijσiσj

σ2
j − σ2

i

, (39.72)

where ρij = cov[θ̂i, θ̂j ]/σiσj is the correlation coefficient.

The correlation coefficient can be visualized as the fraction of the distance σi from the
ellipse’s horizontal center-line at which the ellipse becomes tangent to vertical, i.e., at the
distance ρijσi below the center-line as shown. As ρij goes to +1 or −1, the ellipse thins
to a diagonal line.

It could happen that one of the parameters, say, θj , is known from previous
measurements to a precision much better than σj , so that the current measurement
contributes almost nothing to the knowledge of θj . However, the current measurement of
θi and its dependence on θj may still be important. In this case, instead of quoting both
parameter estimates and their correlation, one sometimes reports the value of θi, which
minimizes χ2 at a fixed value of θj , such as the PDG best value. This θi value lies along
the dotted line between the points where the ellipse becomes tangent to vertical, and has
statistical error σinner as shown on the figure, where σinner = (1 − ρ2

ij)
1/2σi. Instead of

the correlation ρij , one reports the dependency dθ̂i/dθj , which is the slope of the dotted

line. This slope is related to the correlation coefficient by dθ̂i/dθj = ρij × σi
σj

.
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Figure 39.5: Standard error ellipse for the estimators θ̂i and θ̂j . In the case shown
the correlation is negative.
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Table 39.2: Values of ∆χ2 or 2∆ lnL corresponding to a coverage probability
1 − α in the large data sample limit, for joint estimation of m parameters.

(1 − α) (%) m = 1 m = 2 m = 3

68.27 1.00 2.30 3.53

90. 2.71 4.61 6.25

95. 3.84 5.99 7.82

95.45 4.00 6.18 8.03

99. 6.63 9.21 11.34

99.73 9.00 11.83 14.16

As in the single-variable case, because of the symmetry of the Gaussian function
between θ and θ̂, one finds that contours of constant lnL or χ2 cover the true values with
a certain, fixed probability. That is, the confidence region is determined by

lnL(θ) ≥ lnLmax − ∆ lnL , (39.73)

or where a χ2 has been defined for use with the method of least-squares,

χ2(θ) ≤ χ2
min + ∆χ2 . (39.74)

Values of ∆χ2 or 2∆ lnL are given in Table 39.2 for several values of the coverage
probability 1 − α and number of fitted parameters m. For Gaussian distributed data,
these are related by ∆χ2 = 2∆ lnL = F−1

χ2
m

(1 − α), where F−1
χ2

m
is the chi-square quantile

(inverse of the cumulative distribution) for m degrees of freedom.

For non-Gaussian data samples, the probability for the regions determined by
Equations (39.73) or (39.74) to cover the true value of θ becomes independent of θ only
in the large-sample limit. So for a finite data sample these are not exact confidence
regions according to our previous definition. Nevertheless, they can still have a coverage
probability only weakly dependent on the true parameter, and approximately as given
in Table 39.2. In any case, the coverage probability of the intervals or regions obtained
according to this procedure can in principle be determined as a function of the true
parameter(s), for example, using a Monte Carlo calculation.

One of the practical advantages of intervals that can be constructed from the
log-likelihood function or χ2 is that it is relatively simple to produce the interval
for the combination of several experiments. If N independent measurements result in
log-likelihood functions lnLi(θ), then the combined log-likelihood function is simply the
sum,

lnL(θ) =

N∑

i=1

lnLi(θ) . (39.75)

This can then be used to determine an approximate confidence interval or region with
Eq. (39.73), just as with a single experiment.
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39.4.2.3. Poisson or binomial data:

Another important class of measurements consists of counting a certain number of
events, n. In this section, we will assume these are all events of the desired type, i.e.,
there is no background. If n represents the number of events produced in a reaction
with cross section σ, say, in a fixed integrated luminosity L, then it follows a Poisson
distribution with mean µ = σL. If, on the other hand, one has selected a larger sample of
N events and found n of them to have a particular property, then n follows a binomial
distribution where the parameter p gives the probability for the event to possess the
property in question. This is appropriate, e.g., for estimates of branching ratios or
selection efficiencies based on a given total number of events.

For the case of Poisson distributed n, limits on the mean value µ can be found from the
Neyman procedure as discussed in Section 39.4.2.1 with n used directly as the statistic x
. The upper and lower limits are found to be

µlo = 1
2
F−1

χ2 (αlo; 2n) , (39.76a)

µup = 1
2
F−1

χ2 (1 − αup; 2(n + 1)) , (39.76b)

where confidence levels of 1 − αlo and 1 − αup refer separately to the corresponding

intervals µ ≥ µlo and µ ≤ µup, and F−1
χ2 is the quantile of the χ2 distribution (inverse of

the cumulative distribution). The quantiles F−1
χ2 can be obtained from standard tables or

from the ROOT routine TMath::ChisquareQuantile. For central confidence intervals at
confidence level 1 − α, set αlo = αup = α/2.

It happens that the upper limit from Eq. (39.76b) coincides numerically with the
Bayesian upper limit for a Poisson parameter, using a uniform prior p.d.f. for µ. Values
for confidence levels of 90% and 95% are shown in Table 39.3. For the case of binomially
distributed n successes out of N trials with probability of success p, the upper and lower
limits on p are found to be

plo =
nF−1

F [αlo; 2n, 2(N − n + 1)]

N − n + 1 + nF−1
F [αlo; 2n, 2(N − n + 1)]

, (39.77a)

pup =
(n + 1)F−1

F [1 − αup; 2(n + 1), 2(N − n)]

(N − n) + (n + 1)F−1
F [1 − αup; 2(n + 1), 2(N − n)]

. (39.77b)

Here F−1
F is the quantile of the F distribution (also called the Fisher–Snedecor

distribution; see Ref. [4]) .
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Table 39.3: Lower and upper (one-sided) limits for the mean µ of a Poisson
variable given n observed events in the absence of background, for confidence levels
of 90% and 95%.

1 − α =90% 1 − α =95%

n µlo µup µlo µup

0 – 2.30 – 3.00

1 0.105 3.89 0.051 4.74

2 0.532 5.32 0.355 6.30

3 1.10 6.68 0.818 7.75

4 1.74 7.99 1.37 9.15

5 2.43 9.27 1.97 10.51

6 3.15 10.53 2.61 11.84

7 3.89 11.77 3.29 13.15

8 4.66 12.99 3.98 14.43

9 5.43 14.21 4.70 15.71

10 6.22 15.41 5.43 16.96

39.4.2.4. Parameter exclusion in cases of low sensitivity:

An important example of a statistical test arises in the search for a new signal process.
Suppose the parameter µ is defined such that it is proportional to the signal cross section.
A statistical test may be carried out for hypothesized values of µ, which may be done
by computing a p-value, pµ, for all µ. Those values not rejected in a test of size α, i.e.,
for which one does not find pµ ≤ α, constitute a confidence interval with confidence level
1 − α.

In general one will find that for some regions in the parameter space of the signal model,
the predictions for data are almost indistinguishable from those of the background-only
model. This corresponds to the case where µ is very small, as would occur, e.g., in
a search for a new particle with a mass so high that its production rate in a given
experiment is negligible. That is, one has essentially no experimental sensitivity to such
a model.

One would prefer that if the sensitivity to a model (or a point in a model’s parameter
space) is very low, then it should not be excluded. Even if the outcomes predicted with
or without signal are identical, however, the probability to reject the signal model will
equal α, the type-I error rate. As one often takes α to be 5%, this would mean that in
a large number of searches covering a broad range of a signal model’s parameter space,
there would inevitably be excluded regions in which the experimental sensitivity is very
small, and thus one may question whether it is justified to regard such parameter values
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as disfavored.

Exclusion of models to which one has little or no sensitivity occurs, for example, if the
data fluctuate very low relative to the expectation of the background-only hypothesis.
In this case the resulting upper limit on µ may be anomalously low. As a means of
controlling this effect one often determines the mean or median limit under assumption
of the background-only hypothesis, as discussed in Sec. 39.5.

One way to mitigate the problem of excluding models to which one is not sensitive is
the CLs method, where the measure used to test a parameter is increased for decreasing
sensitivity [39,40]. The procedure is based on a statistic called CLs, which is defined as

CLs =
pµ

1 − pb
, (39.78)

where pb is the p-value of the background-only hypothesis. In the usual formulation of
the method, both pµ and pb are defined using a single test statistic, and the definition of
CLs above assumes this statistic is continuous; more details can be found in Refs. [39–40].

A point in a model’s parameter space is regarded as excluded if one finds CLs ≤ α. As
the denominator in Eq. (39.78) is always less than or equal to unity, the exclusion criterion
based on CLs is more stringent than the usual requirement pµ ≤ α. In this sense the CLs

procedure is conservative, and the coverage probability of the corresponding intervals will
exceed the nominal confidence level 1−α. If the experimental sensitivity to a given value
of µ is very low, then one finds that as pµ decreases, so does the denominator 1− pb, and
thus the condition CLs ≤ α is effectively prevented from being satisfied. In this way the
exclusion of parameters in the case of low sensitivity is suppressed.

The CLs procedure has the attractive feature that the resulting intervals coincide with
those obtained from the Bayesian method in two important cases: the mean value of a
Poisson or Gaussian distributed measurement with a constant prior. The CLs intervals
overcover for all values of the parameter µ, however, by an amount that depends on µ.

The problem of excluding parameter values to which one has little sensitivity is
particularly acute when one wants to set a one-sided limit, e.g., an upper limit on a cross
section. Here one tests a value of a rate parameter µ against the alternative of a lower
rate, and therefore the critical region of the test is taken to correspond to data outcomes
with a low event yield. If the number of events found in the search region fluctuates low
enough, however, it can happen that all physically meaningful signal parameter values,
including those to which one has very little sensitivity, are rejected by the test.

Another solution to this problem, therefore, is to replace the one-sided test by one
based on the likelihood ratio, where the critical region is not restricted to low rates. This
is the approach followed in the Feldman-Cousins procedure described in Section 39.4.2.1.
The critical region for the test of a given value of µ contains data values characteristic
of both higher and lower rates. As a result, for a given observed rate one can in general
obtain a two-sided interval. If, however, the parameter estimate µ̂ is sufficiently close to
the lower limit of zero, then only high values of µ are rejected, and the lower edge of the
confidence interval is at zero. Note, however, that the coverage property of 1−α pertains
to the entire interval, not to the probability for the upper edge µup to be greater than
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the true value µ. For parameter estimates increasingly far away from the boundary, i.e.,
for increasing signal significance, the point µ = 0 is excluded and the interval has nonzero
upper and lower edges.

An additional difficulty arises when a parameter estimate is not significantly far away
from the boundary, in which case it is natural to report a one-sided confidence interval
(often an upper limit). It is straightforward to force the Neyman prescription to produce
only an upper limit by setting x2 = ∞ in Eq. (39.67). Then x1 is uniquely determined
and the upper limit can be obtained. If, however, the data come out such that the
parameter estimate is not so close to the boundary, one might wish to report a central
confidence interval (i.e., an interval based on a two-sided test with equal upper and
lower tail areas). As pointed out by Feldman and Cousins [38], if the decision to report
an upper limit or two-sided interval is made by looking at the data (“flip-flopping”),
then in general there will be parameter values for which the resulting intervals have a
coverage probability less than 1 − α. With the confidence intervals suggested in [38], the
prescription determines whether the interval is one- or two-sided in a way which preserves
the coverage probability (and are thus said to be unified).

The intervals according to this method for the mean of Poisson variable in the absence
of background are given in Table 39.4. (Note that α in Ref. [38] is defined following
Neyman [34] as the coverage probability; this is opposite the modern convention used
here in which the coverage probability is 1 − α.) The values of 1 − α given here refer
to the coverage of the true parameter by the whole interval [µ1, µ2]. In Table 39.3 for
the one-sided upper limit, however, 1 − α refers to the probability to have µup ≥ µ (or
µlo ≤ µ for lower limits).

A potential difficulty with unified intervals arises if, for example, one constructs such
an interval for a Poisson parameter s of some yet to be discovered signal process with,
say, 1 − α = 0.9. If the true signal parameter is zero, or in any case much less than the
expected background, one will usually obtain a one-sided upper limit on s. In a certain
fraction of the experiments, however, a two-sided interval for s will result. Since, however,
one typically chooses 1 − α to be only 0.9 or 0.95 when setting limits, the value s = 0
may be found below the lower edge of the interval before the existence of the effect is
well established. It must then be communicated carefully that in excluding s = 0 at, say,
90% or 95% confidence level from the interval, one is not necessarily claiming to have
discovered the effect, for which one would usually require a higher level of significance
(e.g., 5 σ).

Another possibility is to construct a Bayesian interval as described in Section 39.4.1.
The presence of the boundary can be incorporated simply by setting the prior density
to zero in the unphysical region. More specifically, the prior may be chosen using formal
rules such as the reference prior or Jeffreys prior mentioned in Sec. 39.2.5.

In HEP a widely used prior for the mean µ of a Poisson distributed measurement has
been the uniform distribution for µ ≥ 0. This prior does not follow from any fundamental
rule nor can it be regarded as reflecting a reasonable degree of belief, since the prior
probability for µ to lie between any two finite values is zero. The procedure above can be
more appropriately regarded as a way for obtaining intervals with frequentist properties
that can be investigated. The resulting upper limits have a coverage probability that
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Table 39.4: Unified confidence intervals [µ1, µ2] for a the mean of a Poisson
variable given n observed events in the absence of background, for confidence levels
of 90% and 95%.

1 − α =90% 1 − α =95%

n µ1 µ2 µ1 µ2

0 0.00 2.44 0.00 3.09

1 0.11 4.36 0.05 5.14

2 0.53 5.91 0.36 6.72

3 1.10 7.42 0.82 8.25

4 1.47 8.60 1.37 9.76

5 1.84 9.99 1.84 11.26

6 2.21 11.47 2.21 12.75

7 3.56 12.53 2.58 13.81

8 3.96 13.99 2.94 15.29

9 4.36 15.30 4.36 16.77

10 5.50 16.50 4.75 17.82

depends on the true value of the Poisson parameter, and is nowhere smaller than the
stated probability content. Lower limits and two-sided intervals for the Poisson mean
based on flat priors undercover, however, for some values of the parameter, although to
an extent that in practical cases may not be too severe [2,25]. Intervals constructed in
this way have the advantage of being easy to derive; if several independent measurements
are to be combined then one simply multiplies the likelihood functions (cf. Eq. (39.75)).

In any case, it is important to always report sufficient information so that the result can
be combined with other measurements. Often this means giving an unbiased estimator
and its standard deviation, even if the estimated value is in the unphysical region.

It can also be useful with a frequentist interval to calculate its subjective probability
content using the posterior p.d.f. based on one or several reasonable guesses for the prior
p.d.f. If it turns out to be significantly less than the stated confidence level, this warns
that it would be particularly misleading to draw conclusions about the parameter’s value
from the interval alone.
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39.5. Experimental sensitivity

In this section we describe methods for characterizing the sensitivity of a search for
a new physics signal. As discussed in Sec. 39.3, an experimental analysis can often be
formulated as a test of hypothetical model parameters. Therefore we may quantify the
sensitivity by giving the results that we expect from such a test under specific assumptions
about the signal process.

Here to be concrete we will consider a parameter µ proportional to the rate of a signal
process, although the concepts described in this section may be easily generalized to
other parameters. One may wish to establish discovery of the signal process by testing
and rejecting the hypothesis that µ = 0, and in addition one often wants to test nonzero
values of µ to construct a confidence interval (e.g., limits) as described in Sec. 39.4. In the
frequentist framework, the result of each tested value of µ is the p-value pµ or equivalently
the significance Zµ = Φ−1(1− pµ), where as usual Φ is the standard Gaussian cumulative
distribution and its inverse Φ−1 is the standard Gaussian quantile.

Prior to carrying out the experiment, one generally wants to quantify what significance
Zµ is expected under given assumptions for the presence or absence of the signal process.
Specifically, for the significance of a test of µ = 0 (the discovery significance) one usually
quotes the Z0 one would expect if the signal is present at a given nominal rate, which we
can define in general to correspond to µ = 1. For limits, one often gives the expected limit
under assumption of the background-only (µ = 0) model. These quantities are used to
optimize the analysis and to quantify the experimental sensitivity, that is, to characterize
how likely it is to make a discovery if the signal is present, and to say what values of µ
one may be able to exclude if the signal is in fact absent.

First we clarify the notion of expected significance. Because the significance Zµ is a
function of the data, it is itself a random quantity characterized by a certain sampling
distribution. This distribution depends on the assumed value of µ, which is not necessarily
the same as the hypothesized value of µ being tested. We may therefore consider the
distribution f(Zµ|µ′), i.e., the distribution of Zµ that would be obtained by considering
data samples generated under assumption of µ′. In a similar way one can talk about the
sampling distribution of an upper limit for µ, f(µup|µ′).

One can identify the expected significance or limit with either the mean or median of
these distributions, but the median may be preferred since it is invariant under monotonic
transformations. For example, the monotonic relation between p-value and significance,
p = 1 − Φ(Z), then gives med[pµ|µ′] = 1 − Φ(med[Zµ|µ′]), whereas the corresponding
relation does not hold in general for the mean.

In some cases one may be able to write down approximate formulae for the distributions
of Zµ and for limits, but more generally they must be determined from Monte Carlo
calculations. In many cases of interest, the significance Zµ and the limits on µ will have
approximate Gaussian distributions.

As an example, consider a Poisson counting experiment, where the result consists of
an observed number n of events, modeled as a Poisson distributed variable with a mean
of µs + b. Here s and b, the expected numbers of events from signal and background
processes, are taken to be known. If we are interested in discovering the signal process we
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test and try to reject the hypothesis µ = 0. To characterize the experimental sensitivity,
we want to give the discovery significance expected under the assumption of µ = 1.

In the limit where its mean value is large, the Poisson variable n can be approximated
as an almost continuous Gaussian variable with mean µs + b and standard deviation
σ =

√
µs + b. In the usual case where a physical signal model corresponds to µ > 0, the

p-value of µ = 0 is the probability to find n greater than or equal to the value observed,

p0 = Φ

(
n − b√

b

)
, (39.79)

and the corresponding significance is Z0 = Φ−1(1 − p0) = (n − b)/
√

b. The median (here
equal to the mean) of n assuming µ = 1 is s + b, and therefore the median discovery
significance is

med[Z0|µ = 1] =
s√
b

. (39.80)

The figure of merit “s/
√

b” has been widely used in HEP as a measure of expected
discovery significance. A better approximation for the Poisson counting experiment,
however, may be obtained by testing µ = 0 using the likelihood ratio (39.48)
λ(0) = L(0)/L(µ̂), where

L(µ) =
(µs + b)n

n!
e−(µs+b) (39.81)

is the likelihood function, µ̂ = (n − b)/s is the ML estimator. In this example there
are no nuisance parameters, as s and b are taken to be known. For the case where the
relevant signal models correspond to positive µ, one may test the µ = 0 hypothesis with
the statistic q0 = −2 lnλ(0) when µ̂ > 0, i.e., an excess is observed, and q0 = 0 otherwise.
One can show (see, e.g., [43]) that in the large-sample limit, the discovery significance is
then Z0 =

√
q0, for which one finds

Z0 =

√
2

(
n ln

n

b
+ b − n

)
(39.82)

for n > b and Z0 = 0 otherwise. To approximate the expected discovery significance
assuming µ = 1, one may simply replace n with the expected value E[n|µ = 1] = s + b
(the so-called “Asimov data set”), giving

med[Z0|µ = 1] =

√
2

(
(s + b) ln

(
1 +

s

b

)
− s

)
. (39.83)

This has been shown in Ref. [43] to provide a good approximation to the median
discovery significance for values of s of several and for b well below unity. The right-hand
side of Eq. (39.83) reduces to s/

√
b in the limit s ≪ b.

Beyond the simple Poisson counting experiment, in general one may test values of a
parameter µ with more complicated functions of the measured data to obtain a p-value
pµ, and from this one can quote the equivalent significance Zµ or find, e.g., an upper
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limit µup. In this case as well one may quantify the experimental sensitivity by giving the
significance Zµ expected if the data are generated with a different value of the parameter
µ′. In some problems, finding the sampling distribution of the significance or limits may
be possible using large-sample formulae as described, e.g., in Ref. [43]. In other cases
a Monte Carlo study may be needed. Using whatever method of calculation is most
appropriate, one usually quotes the expected (mean or, preferably, median) significance
or limit as the primary measures of experimental sensitivity.

Even if the true signal is present at its nominal rate, the actual discovery significance
Z0 obtained from the real data is subject to statistical fluctuations and will not in general
be equal to its expected value. In an analogous way, the observed limit will differ from the
expected limit even if the signal is absent. Upon observing such a difference one would
like to know how large this is compared to expected statistical fluctuations. Therefore, in
addition to the observed significance and limits it is useful to communicate not only their
expected values but also a measure of the width of their distributions.

As the distributions of significance and limits are often well approximated by a
Gaussian, one may indicate the intervals corresponding to plus-or-minus one and/or two
standard deviations. If the distributions are significantly non-Gaussian, one may use
instead the quantiles that give the same probability content, i.e., [0.1587, 0.8413] for ±1σ,
[0.02275, 0.97725] for ±2σ. An upper limit found significantly below the background-only
expectation may indicate a strong downward fluctuation of the data, or perhaps as well
an incorrect estimate of the background rate.

The procedures described above pertain to frequentist hypothesis tests and limits.
Bayesian limits, just like those found from a frequentist procedure, are functions of the
data and one may therefore find, usually with approximations or Monte Carlo studies,
their sampling distribution and corresponding mean (or, preferably, median) and standard
deviation.

When trying to establish discovery of a signal process, the Bayesian approach may
employ a Bayes factor as described in Sec. 39.3.3. In the case of the Poisson counting
experiment with the likelihood from Eq. (39.81), the log of the Bayes factor that compares
µ = 1 to µ = 0 is lnB10 = ln(L(1)/L(0)) = n ln(1 + s/b) − s. That is, the expectation
value, assuming µ = 1, of lnB10 for this problem is

E[lnB10|µ = 1] = (s + b) ln
(
1 +

s

b

)
− s . (39.84)

Comparing this to Eq. (39.83), one finds med[Z0|1] =
√

2E[lnB10|1]. Thus for this
particular problem the frequentist median discovery significance can be related to the
corresponding Bayes factor in a simple way.

In some analyses, the goal may not be to establish discovery of a signal process but
rather to measure, as accurately as possible, the signal rate. If we consider again the
Poisson counting experiment described by the likelihood function of Eq. (39.81), the ML
estimator µ̂ = (n − b)/s has a variance, assuming µ = 1, of

V [µ̂] = V

[
n − b

s

]
=

1

s2
V [n] =

s + b

s2
, (39.85)
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so that the standard deviation of µ̂ is σµ̂ =
√

s + b/s. One may therefore use s/
√

s + b as
a figure of merit to be maximized in order to obtain the best measurement accuracy of a
rate parameter. The quantity s/

√
s + b is also the expected significance with which one

rejects s assuming the signal is absent, and thus can be used to optimize the expected
upper limit on s.
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